Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein.
نویسندگان
چکیده
We have overexpressed and purified the Helicobacter pylori Fur protein and analyzed its interaction with the intergenic regions of divergent genes involved in iron uptake (frpB and ceuE) and oxygen radical detoxification (katA and tsaA). DNase I footprint analysis showed that Fur binds specifically to a high-affinity site overlapping the P(frpB) promoter and to low-affinity sites located upstream from promoters within both the frpB-katA and ceuE-tsaA intergenic regions. Construction of an isogenic fur mutant indicated that Fur regulates transcription from the P(frpB) promoter in response to iron. In contrast, no effect by either Fur or iron was observed for the other promoters.
منابع مشابه
Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori.
Homologs of the ferric uptake regulator Fur and the iron storage protein ferritin play a central role in maintaining iron homeostasis in bacteria. The gastric pathogen Helicobacter pylori contains an iron-induced prokaryotic ferritin (Pfr) which has been shown to be involved in protection against metal toxicity and a Fur homolog which has not been functionally characterized in H. pylori. Analys...
متن کاملMetal-responsive promoter DNA compaction by the ferric uptake regulator
Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of p...
متن کاملDifferential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor.
The production of high levels of ammonia allows the human gastric pathogen Helicobacter pylori to survive the acidic conditions in the human stomach. H. pylori produces ammonia through urease-mediated degradation of urea, but it is also able to convert a range of amide substrates into ammonia via its AmiE amidase and AmiF formamidase enzymes. Here data are provided that demonstrate that the iro...
متن کاملAcid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade.
Although the adaptive mechanisms allowing the gastric pathogen Helicobacter pylori to survive acid shocks have been well documented, the mechanisms allowing growth at mildly acidic conditions (pH approximately 5.5) are still poorly understood. Here we demonstrate that H. pylori strain 26695 increases the transcription and activity of its urease, amidase, and formamidase enzymes four- to ninefol...
متن کاملIron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur.
Maintaining iron homeostasis is a necessity for all living organisms, as free iron augments the generation of reactive oxygen species like superoxide anions, at the risk of subsequent lethal cellular damage. The iron-responsive regulator Fur controls iron metabolism in many bacteria, including the important human pathogen Helicobacter pylori, and thus is directly or indirectly involved in regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 183 16 شماره
صفحات -
تاریخ انتشار 2001